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Chapter 1
Introduction

Vehicle Routing Problem is a combinatorial optimization problem which can be
defined as the process of finding the least cost for a route of the vehicles to
visit /service a set of geographically scattered points or customers starting from
one or more points called the depot.

The routes of the vehicles are planned initially based on the available requests
which are disclosed in advance. But the requests may be revealed while the
planned routes are on execution. In this case dynamic routing of the vehicles is

required so as to include those new requests in to the ongoing plan. This kind of
variant of the VRP is called DVRP.

1.1 Statement of the problem

Nowadays, scheduling is one of the main challenges in the field of transportation
and distribution networks. It is quite hard to obtain an optimal route for a fleet
of vehicles with a minimum cost and without breaking operation constraints. For
instance, in a postal delivery service the post office wants to deliver a set of postal
mails or packages to its customers with a minimum cost (the cost includes travel
distance, travel time, the number of postmen required, e.t.c). The customer also
wants to receive his/her postal package within a certain time period. The post
office would always ask “how can we find the optimal route that minimizes the

cost?” Another possible question which the post office may ask is: “which is the



best route with a minimum cost so that the customers packages can be delivered
within a specific time period and the post office maximize its profit?” These and
other similar questions need to be answered.

This kind of problem gets even worse when there are an immediate requests, and

in the case of dynamism in general. This dynamism might be caused, when:

e There is a missed delivery of services of customers and a re-delivery is

required.

e There is a change in the location of customers in which the information is
disclosed after the initial planning is done or even after the vehicle started its

trip. The customer may wants to get the delivery to his/her new location.

e The demand of the customers may not be known in advance to the schedul-

ing, and the request is revealed after the routing of the vehicles is done.

e There is a traffic jam in the road of the vehicles. This affects the vehicle

plan to offer the required service to its customers.

e There is a breakdown of vehicles after leaving the depot.

When one or more of the aforementioned dynamism causes take place, it is neces-
sary to route the fleet of vehicles dynamically so as to provide the required service
to the customer.

The general problem that we consider in this thesis is: how to design and develop
a dynamic fleet management system. The following are the specific questions

which we are dealing with.
1. Can we design and develop an algorithm which solves the routing of vehicles

in general?

2. Can we design an efficient algorithm that solves the routing of the vehicles

in the case of dynamism?

3. Does the algorithm that we develop provides us the expected output? That

is, a possible optimal route of vehicles with a minimum cost.

4. Is it possible to obtain an optimal route for the vehicles in a minimum

computational time and resource?



1.2 Objective of the thesis

The main objective of this thesis is to design and develop a dynamic fleet man-
agement system prototype which can help to route a vehicle dynamically. This

thesis focuses on the following specific tasks.

e Review the existing works on VRP in general and more specifically on
DVRP.

e Select one among the available algorithms and implement a prototype for

solving the static-VRP problem.

e Extend the implemented prototype of the static-VRP to tackle the dynamic
variant of the problem. More specifically we focus on the first two dynamism

causes mentioned under the problem definition in section 1.1.

e Perform an experimental tests on the prototype and measure the perfor-

mance and scalability.

e Forward a conclusion and insights for a future research direction.

1.3 Outline of the thesis

The rest part of this thesis is organized as follows. Chapter 2 will introduce the
VRP in general. It will describe the applications of VRP, the different variants
of VRP, the methods and algorithms employed to solve VRP. It will also explain
some related works to DVRP.

Chapter 3 will illustrate the methods and algorithms that will be used to solve
the DVRP. Our proposed algorithm and dynamic scheduling will be presented in
this chapter.

Chapter 4 will present the experimental results performed in our prototype. Also
it will describe the implementation of our prototype, the testing data and the key
performance indicators (KPI) used to evaluate our algorithm.

Chapter 5 will give a conclusion and an insight to future research direction in the

area, more specifically to the continuation of this work.



Chapter 2

State of the Art

The Vehicle Routing Problem (VRP) is a combinatorial optimization problem
which was first introduced by Dantzig and Ramser in 1959 as a generalization of
Travel Salesmen Problem (TSP) which was defined in the early 19" century. Ve-
hicle Routing Problem can be defined as a process to compute a least cost routes
for a fleet of vehicles to visit geographically scattered points, cities or customers
starting from one or more depots [1].

In the past five decades a great attention has been given for VRP and thousands
of papers have been published about it. Specially in the area of Operational
Research, Transportation, Logistics, Computer Science and mathematics an ex-
tensive research has been done to solve the problem. Several algorithms ranging
from exact methods to meta-heuristic algorithms have been developed and used.
The Vehicle Routing Problem is very essential in every day activities of both
private and public sectors especially in distribution networks and transportation
domain. VRP application is not limited to but also includes distribution plan for
wholesaler order, garbage disposal, mail delivery, mailbox collection, repairmen
scheduling, school bus routing, bank deliveries, snow ploughing, e.t.c.

The remaining part of this chapter is organized as follows. The first section
formally describes the Vehicle Routing Problem . The variants of the Vehicle
Routing Problem is described in section two. The third section is about the
algorithms used in Vehicle Routing Problem . A Dynamic variant of the problem

is described in the forth section.



2.1 Overview of the Vehicle Routing Problem

The Vehicle Routing Problem is of a class of NP-hard problems [2]. VRP in
general can be defined on a graph G = (V, A,C), where V= {vy,...,v,} are
the set of vertices '; A = {(v;,v;) | (vi,v;) € V2i # j} is the set of arcs;
and C' = (Cjj)(v;0,)ea is a cost matrix defined over A. In convention, vertex g
represents the depot and the remaining part of the set V' represents the customers
that need a service. The cost matrix C' represents the travel cost, the distance
between pairs of vertices, or the travel time. VRP is then finding an optimal
route for K identical vehicles that starts from the depot and visits all the other
vertices exactly once by exactly one vehicle with a minimum cost and returns
back to the depot [3].

VRP can be also defined as designing an optimal delivery route with a least cost
for a given N + 1 geographically scattered locations. K identical vehicles with
a capacity ) visits N customers with a known non negative demand (d;,i =

1,...,n), without breaking a set of operational constraints. In most of the cases

® Customer

. Depot
Figure 2.1: A vehicle routing scenario with 8 customers.

the vehicles start at the depot and are required to return back to the depot after

visiting the customers. Some of the operational constraints are:

e The total sum of the demand of the customers in a given single route should

not exceed the capacity of the vehicle assigned.

e Every customer should be visited exactly once by exactly one vehicle.

Lunless it is specified explicitly, throughout this document vertice, customer and location
are used interchangeably.



e Each vehicle in a route should return back to the depot after finishing

serving the customers.

e The length of a route may not exceed a prescribed time bound L. This
length made up of the intercity travel time and of the stopping time at each

customer in the route.

e A customer i may need to be visited in a specified time interval [4].

This definition and the constraints are somehow relaxed in some variants of the

problem.

2.2 Variants of Vehicle Routing Problem

The Vehicle Routing Problem is extended by considering different operation
constraints. As a result different variants of the problem are available. In this

section we describe briefly some of the most commonly used variants.

e Capacitated Vehicle Routing Problem (CVRP) : this variant of the
problem is concerned with the vehicle capacity constraint. The total sum of
the the customer’s demand in a route should not exceed the total capacity
of the assigned vehicle.

Mathematically: zn: d; < Qp; where i is capacity of vehicle k, and d; is
the demand of cu;;(ljmer i .

e Distance constrained Vehicle Routing Problem (DCVRP): in this

class of Vehicle Routing Problem the total length of the route that a vehicle

can travel may not exceed a fixed limit L.

e Vehicle Routing Problem with time window (VRPTW): when the
delivery at all or some of the customers is within a pre-specified time inter-
val, the VRP becomes VRPTW. Vehicles may arrive earlier to the service
starting time. In case the vehicle waits until the starting time reaches. If
the vehicle arrives out of the specified time window, it can be accepted with
cost in soft time windows. While in hard time windows the vehicles are not

allowed to arrive out of the time window [2].



Vehicle Routing Problem with backhauls (VRPB): when a route of
the vehicle contains both deliveries (called linehauls) and then collections
(called backhauls) the VRP problem called VRP with Backhauls [2]. The
linehauls picked up at the depot and delivered to the customers, while the

backhauls collected from the customers and returned to the depot.

Heterogeneous fleet Vehicle Routing Problem (HVRP): when the
fleet of vehicles is composed of different types of vehicles the class of the
problem becomes HVRP.

Vehicle Routing Problem with Pick and delivery (VRPPD): sup-
pose that ¢+ and j are locations in the route of a vehicle and when a pickup
at location ¢ should be done before the delivery at location j the variant of

the problem is called VRP with pickup and delivery.

Vehicle Routing Problem with simultaneous pickup & delivery
(VRPSPD): when the same customer have both delivery and pickup de-
mands the variant of the problem is VRP with simultaneous pickup &
delivery. This is a variation of VRPPD in which both are done at the same
customer. For instance, in beverage distribution the vehicle delivers the
beverages at the customers and collect the bottles of the previous deliveries

from the same customer.

Vehicle Routing Problem with stochastic demand (VRPSD): in
this variant the problem the customers demand are assumed to be known
as stochastic variables during the time of planning. A plan failure may
occur when the total demand in a route exceeds the vehicle capacity and
rerouting may be required. VRPSD becomes a DVRP when the demands

revealed during the plan execution.

Dynamic Vehicle Routing Problem (DVRP): in dynamic variant
of the VRP some of the customers demands are known in advance before
the start of the working day and other new requests arrive as the working
day progresses. The system should incorporate these new requests into the
schedule. This variant of the problem is described in more detail in the

next section.



e Open Vehicle Routing Problem (OVRP) : in the other variants of the
problem the vehicle are required to return back to the depot after servicing
all the customers. While in Open VRP the vehicles are required only to

start at the depot and can stop at any customer visited.

e Close-open mixed Vehicle Routing Problem (COMVRP): this vari-
ant is the combination of both the CVRP and OVRP variants. It is intro-
duced by Liu and Jiang in 2012 [5]. The characteristics of COMVRP is
similar with the CVRP and OVRP. All vehicles starts at the depot. After
completing the delivery for CVRP all vehicles are required to return back
the depot, while the OVRP vehicles can stop at any customer served at the
end [5].

e Multidepot Vehicle Routing Problem (MDVRP): in MDVRP, the
vehicles start from multiple depots and should return back to their depot

of origin after visiting all customers in the route assigned to.

2.3 Algorithms for Vehicle Routing Problem

Several algorithms ranging from the exact methods to a meta-heuristic have been
developed and employed to solve the Vehicle Routing Problem . In this section

we briefly describe some of these algorithms.

2.3.1 Exact methods

All known exact algorithms for VRP can solve only small instances of the prob-
lem. The exact algorithms can be either in direct search algorithms, dynamic
programming, or integer linear programming categories [1]. Since the focus of
the thesis is on dynamic part of the problem we do not need to dig into deep on

this type of algorithms.

2.3.2 Heuristic algorithms

The heuristic algorithms for the VRP are derived from the procedures employed

for the TSP [4]. Heuristic algorithms gives a solution but it is not guaranteed to



be the optimal solution. Some of the heuristic algorithms used to solve VRP are

described in this subsection.

1. Constructive heuristic

This algorithm creates the vehicle routes by merging two or more existing
routes or inserting nodes (cities or customers) into an existing route. The
most widely used algorithm of this class is the Savings methods which was
formulated by Clarke and Wright in 1964 [6]. The savings method can be
described as follows.

The savings method considers the set of customers and calculates the ”sav-
ings” for every pair of customers. Depending on the savings result obtained,
the customers can be served by linking them into a route. When the cost
of serving by linking the customers into a route is high, they served sepa-

rately [2]. This algorithm is described in detail on chapter three.

2. Two-phase heuristic
As its name indicates the algorithm works in two steps. This algorithm can

be seen in two different types.

o Cluster-first, route-second algorithms: this method cluster the demand
first and determine the vehicle the route for each cluster. Fisher and
Kaikumar, the Petal algorithm, and the Sweep algorithm are of this
type algorithms [7].

e Route-first, cluster-second Algorithms: these algorithms construct a
tour in the first phase without taking into account the side constraints

and later on divide the tour in to feasible route of vehicles [§].

2.3.3 Meta-heuristic algorithms

Starting from the 90’s different meta-heuristic algorithms have been developed
and used to solve the VRP. Most of these algorithms are inspired by natural and
environmental processes, learning, and searching mechanisms. We mentioned

some of these algorithms in this subsection.

1. Ant colony algorithm:

This optimization algorithm inspired by the ants behavior of foraging for



food. When ants find a food in a random exploration of the surrounding
they return to the nest by depositing a substance called pheromone trial.
When other ants smells this pheromone they stat following the same path
to hunt for food [9]. Ant colony algorithm is a technique to solve a com-
binatorial optimization problems by the use of artificial ants based on the
behavior of the real ants. They have an ability to remember the past ac-
tion and the knowledge about the distance to the other location. In the
routes for the ants (represent vehicles) constructed incidentally by selecting
the next customers until all customers are visited or the capacity of the
vehicle is full. The ants pheromone trials is updated to improve the future

solution [10].

. Genetic algorithm (GA):

The researches for genetic algorithm for Vehicle Routing Problem was
inspired by the Darwin’s evolutionary theory, the survival of the fittest. In
GA the customers are considered as a gene, and the string of customers
form a chromosome which is the route to be visited by a single vehicle.
Initially the vehicles start from the depot and the set of customers in the
route is empty. Then the vehicles select adjacent customers at random to
form a chromosomes (route) and start serving the customers in the route.
When all the adjacent customers are visited or when the vehicle capacity
is empty the vehicle returns to the depot in the shortest path. The fitness
of a chromosome is evaluated based on the total travel distance, the level
of any constraint violation, the number of customers visited, and the total
quantity dispatched by the vehicle [11]. A parent solutions are selected at
random from the population and by using crossover procedure the offspring
are produced from the parents. The one with the better fitness value is
selected as the best solution [12]. If the offspring is better the parent will
be replaced by the offspring and the process iterates until the best solution

found.

. Tabu search algorithm:
Tabu search algorithm is a neighbor search mechanism which iterates to

find the best solution based on the initial solution produce at random. A

10



solution is a set of routes in which a route R, starts from the depot and visits
a set of customers and finally return to a depot. The are many variants of
this algorithm such as Osman’s algorithm, Taillard’s algorithm, the Xu and
Kelly algorithm, the Rego and Roucairol algorithm, e.t.c. [13].

There are also other types of heuristic algorithms such as Deterministic annealing,
Neural Networks, Simulated annealing. However, it is beyond the scope of this

study to mention and describe every algorithm.

2.4 Dynamic Vehicle Routing Problem

Nowadays dynamism is everywhere. So does in transportation and distribution
networks. Traffic jams, customers location change, missed deliveries, online order
request, environmental factors such as road construction, and vehicle availability
and breakdown are some of the causes for dynamism in transportation and distri-
bution networks. Dynamic rerouteing of the fleet of vehicles is required to satisfy
customers need and reduce operational costs. As a result of the recent advances
in communication and information technology, information can be obtained and
processed at real time. This advancement enables to solve the dynamism prob-
lems in the transportation and distribution networks.

The Dynamic Vehicle Routing Problem is one variant of the VRP in which the
requests or the demands of the customer are not known in advance to the route
planning. Instead the requests are revealed while the schedule is on execution.
The system has to decide whether to accept the request or not. An accepted
request must be served. When companies get requests dynamically and if they
cannot fulfil the request because the request is too costly or for other reason, they
may pass the request to their competitor.

To the best of our knowledge, the common causes of dynamism for vehicle routing
studied so far in the literature are the online arrival of the customer request, the
travel time and vehicle availability and breakdown. Moreover, the degree of dy-
namism varies between problems or even within the same instances of a problem.
The dynamism of a problem can be measured by two factors. The first one is

the frequency of changes, that is, the arrival of the new information. The second

11



. Depot

® Customer

(% Customer change location
—> Link from the initial route ® New request
“““ > Link removed from initial planned route

=3 New link added into the route

Figure 2.2: A dynamic vehicle routing scenario with 8 advance, 1 immediate
request and 1 location changed customers.

one is the urgency of the requests, that is, the time interval between the arrival
of the request and the expected service time [14].

Lund et al. defined the degree of dynamism ¢ as a ratio of the number dynamic
requests ng to the total number of request n,; [14].
Mathematically:

ng

5= (2.1)

Mot
in which the value of 9 may vary between 0 and 1. For instance, if § is equal to
0.5 means that half of the customer requests are dynamic.
[15] defined the effective degree of dynamism §¢, which represents the average
of the disclosure time of the request. The measure of the effective degree of

dynamism is defined as:

=3 (2:2)

Mot —1

where :
- Nimm 1s the number of immediate requests;
- t; is the time in which the i** request is received, that is, 0 < t; < T}

- T is the end of the planning horizon that starts at 0;

12



- Ny 18 the sum of the number of advance requests and immediate re-
quests;
Larsen [15] also extended the effective degree of dynamism with time window 05,
by considering the reaction time. Reaction time can be defined as the difference
between the request disclosure time and the latest possible time at which the
service of the request should begin. The reaction time for i immediate request
is denoted by r; and is computed as r; = [; —t; , where [; is the latest possible time
the service should begin, and ¢; is the time of the i immediate request received.
The higher the reaction time means the more flexibility to insert the request into

the current route.
1 Ntot

= — > (1= ) (2.3)

Mot

The value of the effective degree of dynamism is in the interval [0, 1]. 6 = 0
means that the system is pure dynamic, and 0 = 1 means that the system is
pure static. In Dynamic system the requests are received at time 0, and in static
systems the requests revealed at time 7'. [15] used these three parameters to
design a framework that classifies dynamic routing problem in to weakly dynamic,

moderately dynamic, and strongly dynamic problem.

2.4.1 Related works on DVRP methods

DVRP has been studied since 1977 firstly by Wilson and Colvin [14]. However,
it has got more attention in the scientific research community within the last two
decades. In this study we consider only some of the recent works done in the
field.

Bent et al. [16] used a multiple plan approach (MPA) to solve a dynamic vehicle
routing with stochastic request. MPA generates plans continuously based on the
current information and remove those plans which does not have the current in-
formation. MPA handle four types of events. That are customer request, vehicle
departures, plan generation and timeouts. Customer request which update the
set of plans to incorporate the new requests to the schedule. [16] used a ranking
function to maintain a list of distinguished plans.

Zeimpekis et al. [17] proposed a dynamic fleet management system that comprises

13



six different modules. The modules are Geographical Information module, deci-
sion support module, data management module, vehicle on-board system, control
center user interface and vehicle user interface. They mainly emphasized on the
system model for dynamically routing the moving vehicles. They did not give
any experimental results.

Cheung et al. [18] proposed a framework to solve the dynamic VRP. Their frame-
work first determine the route plan by solving the static VRP before the start of
the daily operation and then when a new information arrives then it makes the
dynamic routing. To plan the initial routes for the static routing [18] used “seed
selection” technique and this solution is refined latter by using genetic algorithm
and the final solution is selected. While for making the dynamic routeing plan the
framework considers two dynamism causes. The first one is new customer request
arrival and the second one is new travel time data arrival. In the former case, it
searches the best possible insertion point for the new request in all the existing
routes, check the feasibility of the insertion and evaluate the impact of insertion.
At this step the refinement procedure used in the static case is applied. In the
later case, if the travel time does not affect the feasibility of the current route
plan simply the refinement process continues to improve the solution. Otherwise
remove those infeasible order requests and consider them as a newly arrived or-
der.

Montemanni et al. [19] designed a new algorithm based on ant colony system for
solving DVRP. The dynamism cause they considered in their work is only the
arrival of request as the execution of the initial plan progresses. The algorithm
they proposed consists of three main elements. An event manage, which collects
new orders and keep trace of already served orders and keep the current location
of the vehicle. The event manager uses this information to construct a sequence
of static VRP like instances which can be solved by the second element of their
proposed architecture, that is, the Ant Colony System. The third component,
the pheromone construction procedure is used to pass information about the
characteristics of a good solution from the static VRP to the following one. [19]
sets a cut-off time, and the order requests that arrive after this cut-off time are
postponed to the next working day. The static problem considers only unversed

customers from the previous day. The working day is divided into n; time slots,

14



each one longs T = % seconds, where T' is the total length of the working day
in seconds. New incoming requests with in the the time slot are considered only
at the end of that time slot. They use the time slot concept to limit the time

dedicated to each static problem.
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Chapter 3

Solving the DVRP: methods and

algorithms

In this chapter we describe the algorithm that we proposed to solve the DVRP.
Before we present the proposed algorithm we discuss the algorithms that was
used as a base algorithm. We use the savings method as a base for solving the
static-VRP and add time windows for each route that we get. In order to solve
the dynamic routeing of the fleets of vehicle we extend the time window by adding
an extra time called slack time. Finally by using this slack time we show the dy-
namic routeing of the missed customers and the location change of customers.

This chapter is organized as follows. The first section describes the savings
method. The second section is about Time Window (TW) concept of VRP.
The third section presents our proposed method and algorithm. Section four

describes the dynamic routeing algorithm.

3.1 The savings method

As it is already stated in chapter 2 the savings method was formulated by Clarke
and Wright. The basic idea behind this algorithm is computing the cost of visiting
a pair of customers to decide whether or not to link the customers into a single
route and service them with a single vehicle.

Suppose that there are customer ¢ and j located at a symmetric distance of Cj

16



and Cj; respectively from the depot, and Cj; between them. If these customers
are to be serviced in a separate route the total cost is 2Cjy + 2Cy;. While if the
routes of the two customers are merged into a singe route these customers can be
served with a total cost of Cjy + Cp; + C;;. Hence, the savings S;; of this tour is
computed as follow:

Sij = Cio + Coj — Cj; (3.1)

In savings algorithm initially each customer is visited within a separate route.
However, it is possible to merge two or more customers route into one and service
these customers together so as to reduce the cost. The merging is a repetitive
process to get the best cost reduction. It stops when there is no more feasible
combination of routes.

Let us consider the following scenario to illustrate how savings method works.
Suppose there are ten customers which have a non negative demand. And a ve-
hicle which has a capacity of 70 units should service these customer from a depot
“A” located at a location of (35, 35).

Table 3.1: Illustrative example: customers with their demand.

Customer | Location | Demand || Customer | Location | Demand
B 41 , 49 10 G 25, 30 3
C 35, 17 7 H 20 , 50 15
D 55, 45 13 I 10 , 43 9
E 49 , 20 19 J 55, 60 16
F 15, 30 26 K 30 , 60 16

By using the euclidean distance formula we can calculate the cost or distance
between each pair of customers. Table 3.2 depicts the cost between a pair of
customers. Table 3.3 shows the savings of merging a pair of customers into a
single route. The savings method starts merging the customers with a highest
saving, i.e., customer D and .J, only if the sum of their demand do not exceed
the vehicle capacity. The merging process continues to the next highest saving
value and repeats until all the customers are routed into a route.

Let us see how the routes are being constructed. Customer D and J gives the
highest saving and their total demand (i.e., 13 + 16 = 29) is less than the vehi-

cle capacity. Hence, D and J can be merged into a single route. The resulting
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Table 3.2: Cost matrix between pair of customers for the illustrative example

B C D E F G H I J K

A | 1523 | 18 |22.36 |20.52 | 20.62 | 11.18 | 21.49 | 26.25 | 32.02 | 25.49
B 32.56 | 14.56 | 30.18 | 32.20 | 24.84 | 21.02 | 31.58 | 17.8 | 15.56
C 34.40 | 14.32 | 23.85 | 16.40 | 36.24 | 36.06 | 47.42 | 43.29
D 25.70 | 42.72 | 33.54 | 35.57 | 45.04 | 15 | 29.15
B 3544 | 26 | 41.73 | 45.28 | 40.45 | 44.28
F 10 | 20.62 | 13.93 | 50 | 33.54
G 20.62 | 19.85 | 42.43 | 30.41
H 12.20 | 36.40 | 14.14
I 48.10 | 26.24
J 25

Table 3.3: Savings matrix of merging of a pair of customers for the illustrative
example.

B C D B F G H I J
0.67
23.03 | 5.95

5.66 | 24.2 | 17.16
3.644 | 14.76 | 0.25 | 5.69
1.7 | 12.77 | 7.10 | 5.69 | 21.79
1542 | 296 | 821 | 0.01 |21.21 | 11.78
9.9 | 817 | 3.56 1.4 | 3293 | 17.57 | 35.25
29.44 1 259 | 39.37 | 12.08 | 2.63 | 0.76 | 16.82 | 10.16
25.17 1 0.20 | 187 | 1.73 | 12.57 | 6.26 | 32.57 | 25.49 | 32.51

s Ealbi=iioliilic| lw/ @)

route (let us call it route 1) is: route 1: A - D - J - A. In the next iteration
customer H and [ gives a higher saving. And either of them are not merged into
any other existing route. So they can be merged if their demand (i.e., 15 + 9
= 24) is less than the vehicle capacity. Of course, it is less than and another
new route (let us call it route 2) is constructed in parallel by merging customer
H and I. At this step the resulting routes are: route 1: A - D - J - A and
route 2: A - H - I - A In the third iteration customer F' and [ give the
next higher saving. Meantime customer [ is already included in route 2 and it is
not an interior point to its route. Since the total demand of customers in route
2 is 24, customer F' can be added. Route 2 becomes A - H - I - F - A with
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a total demand of 50. After elapsing several iterations all the customers will be
added to a route and the final routes become:

route 1: A-C-D-J-B-A Cost = 86.95
route 2: A-K-H-I-F-H-A Cost =106.06

The savings method uses two approaches to construct the routes. That is, the
parallel and the sequential ways. In the parallel approach, a link (so to say a
route) is started by merging customers in to a single route. When a link cannot
be added to the existing one (i.e., when there is a constraint violation) a new link
is immediately created in parallel. The process of merging customers and links
continue until all customers are assigned to a link. For instance, the illustrative
example presented above is constructed using the parallel approach. While in the
sequential approach only one route is created at a time. There is no guarantee
to say that one approach performs better than the other. Both approaches gives
good results depending on the instances of the problem. For instance, [2] has ob-
tained better result in the sequential approach. Also [2] indicated that previous
results shown that the parallel approach had performed better.

A pseudo code of the savings method is shown in algorithm 3.1. In the pseudo
code a point (so to say a customer) is said to be an interior (see line 12) to its
route if it is not found adjacent to the depot of the route. In line 16 of algorithm
3.1 “at the same position” is to mean that the points found either both at the
beginning or both at the end of their respective route. If both points are found
either at the beginning or at the end of their respective route, it is not possible
to merge these two routes. In the other cases(i.e., either point i is found at the
beginning, and point j at the end on their respective routes or vice versa) these

routes can be merged unless there is no violation of operation constraints.
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Algorithm 1: The saving methods algorithm pseudo code

input : The cost between each pair of n customers and the cost
between n customers and the depot

output: A set of routes

1 begin

2 Initialize routes

3 List savings < )

4 for 1< 0ton—1do

5 for j< i1+ 1tondo

6 Si; < computeSavings(i, j)

7 L savings.add(S;;)

8 savings.sort(descending)

9 foreach S;; in savings do

10 if ¢ and j not isRouted() then

11 Initialize newRoute

12 L newRoute.add(4, j)

13 else if i or j isRouted() and not isInterior() and not

constraints Violated() then

14 link 7 and j

15 else if i and j isRouted() and not sameRoute() then

16 if ¢ and j not isInterior() and not samePosition()and not
constraints Violated() then

17 t merge the two routes

There are different operation constraints that need to be respected in VRP.
Among these vehicle capacity is the major constraints to be considered in using
the savings method. In addition truck availability (number of vehicles available
for servicing), customer service time, maximum distance that the vehicle can
travel, driver working time, etc are also some of the operation constraints to be
considered in the different variants of VRP.

The complexity of the savings method is O(n?). The savings algorithm starts
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by defining one route for each customer, which costs O(n), where n is the total
number of customers. When computing the savings for each customer form line 3
to line 7 of algorithm 3.1 it iterates n — 1 times and the complexity is O(n?). The
feasibility checking is done in a constant time. For searching the best combination

of routes, that is, from line 8 to line 17 of algorithm 3.1 the complexity is O(n).

3.2 The time window concept for VRP

As we saw in the previous chapter there are different variants of VRP. For in-
stance, let us consider a case of a postal delivery service. The post office divides
the office hour and can assign a specific time period (say, [e;, [;]) to each customer
when they will get their deliveries. That is, the customers should receive their
deliveries within the specified time period. As it is already described in the pre-
vious chapter, this kind of VRP variation is called Vehicle Routing Problem with
Time Window (VRPTW). This time window add a complexity to the problem,
and hence VRPTW is also a type of N P-hard problems.

In VRPTW the service of a customer ¢ (for i = 1,...,n) begins at time b; of the
time window specified with an earliest time e; and a latest time [;. If a vehicle
travels directly from customer i to customer j and arrive too early at j, it has
to wait until the service start time of customer j reach. That is, the begin time
b; = max(e;, b; + s; +t;;), where s; is the service time of customer ¢ and ¢;; is the
travel time between customer ¢ and j [20].

In the following part of this section we show how to assign customers into a time
window and latter on we will use it to solve the dynamic variant of the problem.
In section 3.1 we used the savings method to solve the static VRP, and we already
have got the routes. The route can be divided into a set of time windows and
each customer is to be assigned into a time window. The time window assignment
for customers in a route works as follows. A working day has OT hour length
of operational time. Within this operational time a vehicle v can service m cus-
tomers in a route k. Therefore we divided the operational time in to equal length
of time period tp and assign to customers which are already routed by using the
savings method. The earliest service time and latest service time for customers

is the beginning and end of the time window respectively. It is clear that anyone
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can use any algorithm to construct the initial route for the customers.

tpl th Sinkis ‘ th ‘

1
| |
| time

v

Operation Time (op)

Figure 3.1: Time windows for a give operation time

In order to assign the customers to a time window we need to know the distance
between each customers or the travel time it takes from one customer to another
one. Once we have the travel time ¢;; from customer ¢ to customer j, then we can
easily decide how many customers is to be assigned to a specific time window.

The following pseudo code shows the assignment of customers to a time window.

Algorithm 2: The time window assignment pseudo code

input : A route which has m customers, operation time length OT
and the a time window length tp

output: A route divided into time windows

1 begin
or

or
3 | timeWindow[s] - OT.divideIntoTimeWindow(¢p)
4 current TW <— timeWindow/|0]

2 integer s < |

5 integer counter « 1

6 for 1+ 1 tom do

7 if currentTW.full() then

8 current TW+— timeWindow[counter]

9 counter < counter + 1

10 j+—i—1

11 if s;+t;; + currentTW.time() < tp and j # 0 then
12 current TW.add ()

13 else

14 currentTW+— timeWindow|counter]

15 currentTW.add(z)
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In algorithm 3.2, ¢ where ¢ = 1, ..., m refers the customer in a given route k.
If the customer is in the first position of the route, the customer is going to be
assigned at the first time window. While if the customer is not at the first position
of the route the customer is going to be either added to the current time window
or assigned to the next time windows depending on the length of its service time
and the travel time from its predecessor customer j in the route. That is, the
sum of its service time s;, travel time ¢;;, and the time length that is required to
service the customers already in the time window should be less than or equal to

the total length of the time window tp.

3.3 Our proposed algorithm

We have proposed an algorithm that solves the dynamic variant of VRP. The
algorithm that we proposed is based on the savings method described in section
3.1 and the time windowing concept described in section 3.2. The algorithm can
efficiently solve the dynamic VRP, especially the dynamism which are caused by
missed deliveries and customers location change. Let us consider a case of postal

delivery service and see the two dynamism causes in more detail.

1. Missed deliveries:
A postman started to distribute the postal package for customer a, b, ¢, d, e,
and f. Assume the delivery sequence is in alphabetic order. When postmen
has arrived at location d he noticed (or be informed) that customer b's
package is not delivered. Customer b should get his/her package within that
date. Therefore, a dynamic rescheduling is required to service the missed
customer b, by finding the best possible insertion point starting from the
current location of the postman , that is, the location of customer d. It may
be highly expensive to insert customer b from the location of the postman
on wards. In this case customer b will get his/her package with another

route after the postman returned back to the post office (i.e., the depot).

2. Customer location change:
The post office informed its customers that he/she is going to receive his/her

deliveries at his/her home, say location [y, within a specific time period
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[tbegins tena). However, due to a traffic congestion the postman could not
be able to arrive at the customers location within the specified time. A
customer left his/her home and gone to his/her work place. In the mean-
while the customer informed the post office as he/she already left his/her
original location and his/her postage deliveries shall be delivered to his/her
work place at certain location /;. In such cases the post office has to decide
whether or not to deliver the postage deliveries to the new location of the
customers. Rerouteing the current vehicle (i.e., the postman) is essentially
required to decide whether or not to service the customer by current vehi-
cle. If it is profitable to deliver the deliveries to the new location /; and the
service of the other customers in the route will not be affected; the deliv-
eries will be done by the current postman. That is, by searching the best
feasible insertion point in the route starting from the current location of the
postman. Otherwise a new postman is required to service the customers

who changed their location.

In both cases the total cost of the service Ciorar = Cstatic + Caynamic- Where Ciiqic
is the cost required to service the customers up to the current location of the vehi-
cle (i.e., where the miss delivery and/or the location change is detected). While
Caynamic 15 the cost required to service the customers after rerouteing starting
from the vehicle location.

This problem of rescheduling the customers starting from the current location of
the vehicle becomes another variant of VRP. That is, it is a kind of Open VRP,
which is already discussed in section 2.2. After the vehicle finish servicing all the
customers it is not required to go back to the point where the rerouteing is done.
Instead, it has to go to the depot, where it started its tour.

In order to overcome the aforementioned problems it is necessary to reroute the
vehicles, and the problem becomes a DVRP. So we need to solve the DVRP.
To solve the DVRP different approaches and algorithms have been employed.
Some of the recent works has been already discussed in section 2.4.1. By using
savings method as a base algorithm to plan the static route at the beginning of
the working day and adding a time window for each route we have proposed an
algorithm that solves the DVRP. Especially for a dynamic problems which are

caused by the two dynamism causes mentioned above. The time windows where
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the customers are missed can be easily identified. Therefore, we need to look
for another time window (i.e., starting from the current location of the vehicle)
which can accommodate to service the missed customers!' and provide the service
if it is feasible to do.

Inserting the missed customers into the planned time windows (i.e., with a con-
stant time window length) may highly affect the service time of the future cus-
tomers?. They may not be serviced within the time windows assigned to them.
Therefore, we have to extend the time window length so that it is possible to in-
clude the missed customers and the future customers can get their service within
the time window assigned to them.

The time window is extended by adding an extra slot time which we call it slack
time. By adding a slack time the total length of the time window becomes longer
so that it can accommodate other customers without affecting the service time
of the customers assigned within that time window. Off course, the missed cus-
tomers can only be inserted to this time window if it is feasible and profitable to
do. In the next subsection we will describe how the slack time is calculated and

added to the existing time window.

3.3.1 Slack time

A slack time is a small length of time to be added to elongate the time window. It
can have a constant length or a variable length that is computed by considering
different constraints. In our algorithm we calculate the slack time by considering
other constraints such as the length of the operation time (OT'), the time window
length (¢p), and the number of customers initially assigned to the time window.
More details about the calculation of the slack time is given in section 3.3.2.
Figure 3.2 shows a time window extended with a constant length slack time. The
time window without a slack time extension is already shown in figure 3.1. As
it is shown in figure 3.2 the time window length (t¢p) is longer by an amount of

slack time, let us call it st. For instance, in figure 3.2 the length of time window

I unless and otherwise it is stated explicitly, missed customer hereafter refers both customers
which has a missed deliveries and customer which change their location.

2 future customer is to refer those customers that are located next to the current location
of the vehicle in the current route.
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Figure 3.2: Extended time window with a constant length slack time

1 (tp1) (i.e., where its beginning time is b; and its end time is e;) becomes to tp)
(i.e., where its beginning is b} and its end time is €]). The same is true for time
window 7 and others.

The new time window length tp’ is equals to the sum of the original time window
length ¢p and twice the slack time length st (i.e., one at the beginning and another
one at the end of the time window). That is, tp} = tp; + 2(st) where i = 2, ... r.
However, for the first time window, the new length ¢p| = tp; + st. This is so,
because we do not add a slack time at the beginning of the initial time window.
Therefore, this clearly shows that tp} is greater than tp;, where i = 1,...,r, and
there is a high possibility to insert a missed customer(or a new request) in time
window .

In the next sub section we will describe how to calculate the slack time for the

time windows in a route by considering the aforementioned different constraints.

3.3.2 Slack time calculation

A variable length slack time is computed by considering the different side con-

straints. Some of the basic constraints are listed out in the previous section, see
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section 3.3.1. The slack time is computed as follows.
The available total slot time for a route k AST} is the difference between the
length of the operation time OT' and the routeing time RT'. i.e.,

AST, = OT — RT (3.2)

where:
e OT is the operation time of a day in hours,

e RT is the sum of the length of the time windows in route k in which

customers are already assigned.

The maximum slack time for route k, MaxST) that can be added into a time

windows within a route is calculated as:

MazSTy, = % (3.3)

where:

e TP, is the original time window length in hours, which is the same for all

the time windows in a route k.

From equation 3.3 we get the maximum possible slack time that can be added
to each time window. However, this equation gives us an equal slack time length
for all time windows within a route. This is almost the case of the constant slack
time described in section 3.3.1. The only difference is that instead of adding just
a constant length, the slack time length is computed from the operation time,
and the original time window length. Therefore, we need to optimize it to get
an optimal slack time for each time windows. So that every time window has
different length depending on the number of customers assigned to it.

With this optimization the time window which contains larger number of cus-
tomers will have higher slack time length. And if the time window do not contain
any customer it will have a slack time length of 0. In the former case a time
window has a less possibility to accommodate a new customer into it. While

in the latter case, the time windows can accommodate relatively high number
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of new customers. In order to give an equal probability of accommodation of
missed customers for all time windows the slack time has to be optimized. The
optimization of the slack time is described in appendix 1.

The optimal slack time is less or equal to the maximum slack time. With the
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Figure 3.3: Extended time window with a variable length slack time

optimal slack time every time window within a route has different length. So a
missed customer can be inserted into the appropriate time window in which the
service time of the other customer is not going to be affected. Furthermore, the
service of the customers in the other time windows do not be affected due the

insertion of the missed customers.

3.4 Dynamic scheduling

In section 3.3 we described the two dynamism causes (i.e., miss deliveries and cus-
tomers location change) that we considered in our proposed algorithm. Moreover,
we described that how a slack time is computed and added to the time window
concept(see section 3.2) so as to elongate its length in order to accommodate the
missed customers. In this section we describe how the dynamic scheduling can

be done.
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Once the slack time for each time window is computed and added to the re-
spective time window, a missed customer can be inserted into the best possible
feasible insertion point and get serviced. In order to find the feasible insertion
point different algorithms can be employed. In our algorithm we applied the brute
force search algorithm into the savings method. The approach we used works as
follows.

First, it selects the time windows that are not reached yet starting from the cur-
rent location of the vehicle. That is, the time windows that contain customers
which are not serviced yet. By doing so the search space for the brute force algo-
rithm is also minimized. After selecting the time windows it compute the savings
of servicing the missed customer in between two consecutive customers' or next
to the last customer in the search space.

The feasible insertion point is selected in an iterative process based on the savings.
That is, the highest saving is considered first. If there is enough time to include
the missed customer within the time window which contains the customers that
gives the current saving under consideration, this time window is selected as the
best feasible insertion point. Otherwise the iteration continues and check the
next highest saving.

The complexity of computing the savings of inserting the missed customers is
O(n? + m?), where m is the number of missed customers and n is the number of
customers in the route which are not serviced yet. The feasibility checking has a
constant complexity. While finding the feasible route has a complexity of O(n).
The whole complexity of the algorithm is O(n® + m?n). The following pseudo

code describes how the algorithm works.

Lconsecutive customers, is mean that the customers which are found next to each other in

the route.
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Algorithm 3: Dynamic routeing of missed customers

10

11

12

13

14

15

16

17

18

19

input : A list of missed customers, current vehicle location, and

the route 7.

output: A new route

begin

/* divide the route into visited and not visited
to get the un-visited part of the route */

route nR < r.getUnVisited()

List newSavings < ()

List unRoutedCustomers < ()

foreach missed customer m do

boolean b <« false

foreach subRoute s in nR do
foreach customer ¢ in s do

t newSavings.add(computeSaving(c, m, c.next()))

newSavings.sort(descending)
foreach s in newSavings do
if b = true then

t break

customer ¢ < s.getFirstCustomer()
/* get the sub route where customer c found.
*/
st < c.getSubRoute()
if m.serviceTime() + travelTime(c, m, c.next())+
sr.totalTimeln() < sr.OptimalSlackTime() then
insert m next to ¢
b < true
nR.updateRoute()
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Chapter 4
Experimental Results

In this chapter we describe the tests we performed and the results we obtained.
This chapter is organized as follows. The first section describes the implemen-
tation and testing of the prototype. The KPI that was used to evaluate the
performance of our algorithm and the developed prototype is also described in

this section. The obtained results are given in the second section.

4.1 Implementation and testing

We implemented the prototype with Java technology. In addition with the im-
plementation of the main algorithm the prototype has a simple graphical user
interface (GUI) which is used to simulate the routes. Also the GUI is used for
providing the inputs during the testing.

We tested the prototype on a machine which has a Windows 7 operating system,
4GB of RAM, and Intel duo core of CPU with speed of 3.07 GHz each.

4.1.1 Test data

To execute tests and measure the performance of the prototype and hence the
our algorithm we used the Solomon’s test instance [20]. The Solomon’s instance
has the format shown in table 4.1. From table 4.1 only the first four columns
were necessary for the purpose of our prototype. The first column is the identifier

of the customers, the second and the third columns are the X and Y coordinates
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Figure 4.1: A simple GUI of the developed prototype

Table 4.1: Solomon’s test instance format

ID X Y DEMAND READY TIME DUE DATE SERVICE TIME
0 35 35 0 0 230 0
1 47 87 35 151 181 10
2 31 25 10 60 70 10

of customers location respectively, and the fourth one is the demand of the cus-

tomers. The euclidean distance (considered as the cost) between the customers

was calculated from the X and Y coordinates of the customers location.

Solomon has generated his test instances in three different categories, i.e., clus-

tered, random and random clustered mixed. We used the random instance to

test our prototype.

We took an assumption for the speed and the capacity of the vehicle. The aver-

age drive speed of vehicle in the town is from 30 - 40 kilometers per hour and we

assumed 30 kilometers per hour for our test. Based on the demands given in the

test instance we assumed the capacity of the vehicle to 200 units.
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4.1.2 Testing

We provided the Solomon’s test instance data to our prototype and first it planned
the static route based on the savings method. This gave us the list of routes
which in turn contain a list of customers and the cost incurred to service these
customers. For example, figure 4.2 shows the final routes after the execution of

the algorithm for 25 customers.

Mumber of Routes = 2

Route 1: & - 23 - 22 - 2 - 15 - 14 - 16 - 17 -8 -5 - 18 -6 - 12 - 21 - 24 - & , Cost = 261.74
Route 2: ® -9 - 26 - 106 - 11 - 19 - 7 -1 - 12 - 3 -4 - 25 -8 , Cost = 229.83

Total cost: 491.57

Figure 4.2: Hlustrative example: final routes of 25 customers.

Route 1:
Max Slot Time: 1.6GGRGRERGEERGERET
Slote inconsistency: 2.8
Time Window 1:

Optimal slot time: ©.5952388952388952

[9:00 - 11:06]: 23 - 22 - 2 - 15 - 14 - (Time: ©.874538 )
Time Window 2:

Dptimal slot time: 8.5952388952388952

[10:38 - 13:12]: 16 - 17 - 8 - 5 - 18 - (Time: @.856522 )
Time Window 3:

Optimal slot time: ©.4761984761984763

[12:43 - 15:85]: 6 - 13 - 21 - 24 - (Time: @©.735295 )

Route 2:
Max Slot Time: 1.6666666666666667
5lote inconsistency: 2.2
Time Window 1:

Optimal slot time: @.7575757575757576

[9:00 - 11:16]: 9 - 28 - 18 - 11 - 19 - (Time: ©.811301 )
Time Window 2:

Optimal slot time: @.6B686RGBGEERGEAGL

[1@:3% - 13:17]: 7 - 1 - 12 - 3 - (Time: ©.744068 )
Time Window 3:

Dptimal slot time: 8.38383838383838384

[12:58 - 14:48]: 4 - 25 - (Time: ©.190989 )

Figure 4.3: Illustrative example: time windows for the routes of 25 customers.

After the initial routes were planned a time window was assigned to each customer

in the route. Based on the number of customers assigned to each time window,
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the length of the operational time (which was assumed to be 8 hours per day), and
the length of the time window (which was assumed 1 hour length) the slack time
was calculated. Moreover, the time windows length was adjusted accordingly in
order to accommodate the missed customers.

Figure 4.3 depicts the obtained time windows for routes of the 25 customers. In
the figure “Time” is to refer the actual time in hours that was required to service
all the customer within the time window. For example, 0.87 hour was required

to service the customer in the first time window of route 1.

Dynamic Scheduling

Missed delivery is at customer: 18,

Current wehicle location is at customer: 1

Intial route: 9 - 286 - 16 - 11 - 19 - 7 -1 -12 - 3 - 4 - 25 - @
Initial route cost: 229.82794491567955

Static cost until wvehicle location: 128.92542252176784

The new route after miss delivery is inserted:
l1-18-12 -3 -4 - 25 -8 , Cost: 131.83117579908677
Total cost after miss delivery is inserted: 268.75659831135465

Figure 4.4: Illustrative example: a new route after a miss delivery is rerouted
and inserted into another time window.

Figure 4.4 shows the resulted route after a missed delivery is reinserted. Customer
10 from route 2 in figure 4.2 had been missed and it was detected when the vehicle
had arrived at customer 1. Applying the algorithm inserting next to the vehicle
location was profitable and the missed customer was inserted just next to the
vehicle location. As a result of this reinsertion the total cost of the route was also
increased from 229.83 to 260.76.

4.1.3 Evaluator

The following are some of the KPI that were used to measure the performance

and the scalability of our proposed algorithm and the developed prototype.

e Cost:

By measuring the total cost of the routes for a given set of customers and
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the total cost after a missed customer is reinserted into the route we aimed

to see the changes in the cost.

e Number of routes:
By measuring the total number of routes for a given set of customers we
need to see the change in the number of routes after the missed customers
from another set customers are added. That is, if 'x” number of customers
are missed from a set of 'y’ number of customers, we wanted see the change
in the number of routes after these 'x’ customers are added to another 'z’

set of customers.

e Execution time:
Although it do not directly measure the performance of our proposed al-
gorithm and we were not able to draw any conclusion by using it, we also
wanted to know the execution time it took to route and to add the time

window for a given set of customer.

4.2 Results

We performed a set of tests by varying the percentage (i.e., to 10% and 20%) of
the missed customers. We used 25, 50, 100, and 200 customers for testing our
prototype. In this section we present the results we obtained for the evaluation
criteria which are mentioned in section 4.1.3.

Figure 4.5 shows that the cost increased upto 20% of the initial cost when there
was 10% of missed delivery and reroute them into the same route by using our
algorithm. Figure 4.7 shows that there was upto 14% increase in the number of
routes if those missed deliveries were added to and got the service with another
set of customers. These two graphs shows that our algorithm performs better.
Because the cumulative cost of servicing those missed customers by adding them
to another set of customers was higher. That is, first the number of routes had
been increased. Second, there was also a service cost in the new route. Third,
the customers service time would definitely be affected. The customers might not
got their service in the same date or even within a couple of dates (for example

if the next day was either weekend or holiday).
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Figure 4.5: The cost increase after 10% missed deliveries are rerouted into the
same route.

Figure 4.6 and 4.8 shows that the cost increased and the increase in the number
of routes respectively for 20% missed deliveries. Servicing those missed customers
in the same route added an extra cost of about 55% of the initial planned cost.
Also, the increase in the number of routes was more than 20%. The total cost
of servicing those missed customer with another set of customers was still high.
However, we cannot predict what would happen in a real and could not be able
to draw any conclusion from it.

We observed that the depot in the Solomon’s test instance is located nearly in
the center of the customers distribution. However in the real world scenarios this
is not always true. For instance, there are cases where the depot is out of the
city and the customers could be within the city. We changed the location of the
depot to out of the center and we observed that the cost of servicing the missed
customers within their route was relatively low that adding them to another set
of customers. From these observation we came to conclude that the customers
distribution and the depot location determines our proposed algorithm.

We have seen that our prototype can efficiently route upto 200 customers. It is
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Figure 4.6: The cost increase after 20% missed deliveries are rerouted into the
same route.

fascinating to test the prototype with large number of customers. This shows
that our prototype is scalable to work with large instances of VRP. Furthermore,
our proposed algorithm performed good for a missed deliveries upto 10%. Also
the results we got for 20% of missed deliveries is not enough to conclude that the

algorithm could not perform well for more than 10% of miss deliveries.
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Figure 4.7: The increase in the number of routes after 10% missed delivery of
customers were added to another set of customers.
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Figure 4.8: The increase in the number of routes after 20% missed delivery of
customers were added to another set of customers.
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Figure 4.9: The execution time elapsed to route customers, to add the time
windows and extend them by computing the optimal slack time.
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Chapter 5

Conclusions

5.1 Summary

In this thesis we have introduced a concept of slack time and proposed an al-
gorithm which solves a DVRP. Especially we considered two dynamism causes
(i.e., missed deliveries and customer location change) and solved them using our
proposed algorithm. Customers assigned to a route may have a missed delivery
or change their location after the initial plan has done and rescheduling is essen-
tially required to service those customers.

The time windows in a route is elongated by adding an extra slack time and can
accommodate missed customers. To give an equal probability of adding missed
customers to the time window, the optimal slack time for each time window has
to be computed. This optimal slack time is calculated by considering the number
of customer initially assigned to the time window, the length of the operation
time and the length of the time window.

The tests we performed in our prototype shows that our proposed algorithm is
good enough to dynamically schedule a missed customers upto 10% of the total
customers. The results we got by rerouteing the missed customers upto 20% of
the total customer are not that bad. Instead it is interesting to make other tests
with a real data and see the maximum amount of missed customers that the al-
gorithm can efficiently reroute. Furthermore the test we performed showed that

our prototype is scalable.

40



5.2 Future work

This work may continue in many directions. The following are some of our sug-

gestion as a future research direction.

1. The slack time computation is just been developing. The slack time opti-

mization can be further improved.

2. The time window adjustment has been done initially during the planning.
It would be potentially interesting to adjust the length of the time window
immediately when the route execution is going on. The slack times which
are added to the time window can be collected and pushed forward if they
are not used in the preceding time windows. So that this slack time will
be used to elongate the subsequent time windows. This would give a high

possibility of accommodation of missed customers.

3. It is fascinating to use other algorithm such as meta-heuristic or any in-
telligent algorithm to do the dynamic scheduling. This might reduce the
complexity caused by the brute force searching algorithm during the dy-

namic routing.

4. We need to test the prototype with a real transportation data and perform

more test with high number of customers.

5. We need also to apply this prototype in a mobile environments. This would
give us the chance to track the exact location of the vehicle where the missed
customer is detected and to do the rescheduling from this point, not only

from the successor customer of the vehicle location.

6. Integrate the prototype with mobility simulation tools such as SUMO.
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Appendix 1: Slack time

optimization

The optimal slack time for a time window ¢, OST; is calculated as follows.
OST;, = o X MaxST; (1)

Where «; is a slot inconsistency factor for a time window i. «; for a time window
i is computed by considering the slot inconsistency(S7) of the time window and
the route as a whole. The formulas to calculate the slot inconsistency factor «;
is given below.

A slot inconsistency for a time window ¢ is calculated as follows:
SI;=nxp (2)

where:
e 1 is the number of customers in a time window ¢, and

e p is the percentage of the maximum number of missed customer in a route

that can be tolerated and its value is 0.2.

The total slot inconsistency for a route k is the sum of the slot inconsistencies of

all the time windows within the route, 7.e.,

t
SI, =) ST, (3)
1=1

Where:
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e SI; is the contribution of a time window ¢ for the total slot inconsistency

of route k.
e t is the number of time windows a route k.

Finally from equation 2 and 3 we can compute the slot inconsistency factor a for

time window ¢ as follows:

SI;
= 4
51, (4)

Q;
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