
Narrowing the gap between QoS metrics and
Web QoE using Above-the-fold metrics

Diego Neves da Hora1, Alemnew Sheferaw Asrese3, Vassilis Christophides2,
Renata Teixeira2, and Dario Rossi1

1 Telecom Paristech – first.lastname@telecom-paristech.fr
2 Inria – first.lastname@inria.fr

3 Aalto University – alemnew.asrese@aalto.fi

Abstract. Page load time (PLT) is still the most common applica-
tion Quality of Service (QoS) metric to estimate the Quality of Experi-
ence (QoE) of Web users. Yet, recent literature abounds with proposals
for alternative metrics (e.g., Above The Fold, SpeedIndex and their vari-
ants) that aim at better estimating user QoE. The main purpose of
this work is thus to thoroughly investigate a mapping between estab-
lished and recently proposed objective metrics and user QoE. We obtain
ground truth QoE via user experiments where we collect and analyze
3,400 Web accesses annotated with QoS metrics and explicit user rat-
ings in a scale of 1 to 5, which we make available to the community. In
particular, we contrast domain expert models (such as ITU-T and IQX)
fed with a single QoS metric, to models trained using our ground-truth
dataset over multiple QoS metrics as features. Results of our experiments
show that, albeit very simple, expert models have a comparable accu-
racy to machine learning approaches. Furthermore, the model accuracy
improves considerably when building per-page QoE models, which may
raise scalability concerns as we discuss.

1 Introduction

The Web remains one of the dominant applications in the Internet. Originally
designed to deliver static contents such as text and images, it evolved to serve
very dynamic and complex content: it is not uncommon for modern pages to
include hundreds of objects and dozens of scripts, placed at different servers
hosted in different domains [11]. Given this complexity, the Web architecture
and protocol landscape evolved as well, aiming at more efficient operation and to
enhance the end user QoE: the introduction of Content Delivery Network (CDN)
and different protocols such as HTTP2 [7], SPDY [16], QUIC [19] are some of
the efforts in this regard.

Measuring the impact of different network and Web browsing configurations
on Web browsing performance is essential to enhance user satisfaction. The met-
ric most commonly used to measure the performance of Web browsing has been
the Page Load Time (PLT), which holds true for both research [13, 26, 21, 27,
25] and industry [1, 2, 4]. Recent studies [10, 3, 8, 18, 24, 15], however, started to



question the relevance of using PLT to measure quality of user experience. The
main skepticism is that whereas PLT measures the precise time at which the page
finishes loading, the experience of the user depends on the whole process up to
that time and the rendering time at the browser. As such, a number of alterna-
tive metrics, which we review in Section 2.1, such as the Above-the-Fold (ATF)
time [10], SpeedIndex [3], Object/ByteIndex [8] and PerceptualSpeedIndex [15]
have been proposed to bridge this gap.

The approach adopted by the measurement community for computing met-
rics like ATF time and SpeedIndex requires taking a series of screenshots of the
Webpage loading progress and post-processing the captured frames. Unfortu-
nately, this approach is computationally intensive, which makes these metrics
complex to measure [15]. Our first contribution (presented in Section 3) is to
propose a tractable method to estimate the ATF metric, and offer an
open-source implementation as a Chrome extension [5].

Still, to date the relationship between this class of objective metrics and
the user subjective feedback (e.g., via explicit ratings summarized with Mean
Opinion Score (MOS)) remains to be elucidated. Indeed, while models mapping
PLT to an estimated MOS do exist [17, 14] (see Section 2.2), to the best of our
knowledge, extensions of these models to leverage these new metrics are still
lacking. Recently, Gao et al. [15] evaluated machine learning models that use
these new metrics as features to forecast A/B test results, where users are asked
to compare two Webpages loading side-by-side and identify which one loads
faster. Although Gao et al.’s work [15] represents an important step in the right
direction, A/B tests are a special case: i.e., we still miss an answer to the more
general question of how to estimate QoE of a single page a given user visits.

In this paper, we thoroughly investigate a mapping f(·) between user QoE,
expressed in terms of subjective MOS, and some QoS factor x that represents
objective measured properties of the browsing activity. In particular, we are
interested in cases where x can be any combination of the above objective metrics
and where the mapping f(·) is either defined by a domain expert (e.g., according
to popular models like ITU-T [17] or IQX [14]) or data-driven models learned
using classic machine learning algorithms (e.g., SVR regression, CART trees).

The other main contribution of this paper (presented in Section 4) is to per-
form a thorough assessment of expert models (ITU-T [17], IQX [14],
etc.) and contrast them to models learned from the data using dif-
ferent machine learning algorithms, which our investigation finds to have
surprisingly comparable accuracy performance. Our analysis relies on a dataset
with 3,400 Web browsing sessions where users explicitly rated the quality of the
session. This dataset extends our previous effort [9] and we make available to
the community [28]. We conclude that expert models for Web QoE can easily
accommodate new time-related metrics beyond PLT, and that their accuracy is
comparable to that of data-driven models. Still, we gather that there is room for
improvement, as a single expert model is hardly accurate for the wide variety
of Web pages. At the same time, while we find that per-page models have supe-
rior forecast performance, the approach is clearly not scalable, which opens new



P
ro
g
re
ss

1

TTFB t

X x(t)
PLT

DOM ATF PLTTTFP

P
ro
g
re
ss

1

TTFB t

X
x(t)ATF

DOM ATF PLTTTFP

Fig. 1: Illustration of time-instant (x-axis labels) and time-integral metrics
(shaded surface). The time horizon of the time-integral metrics can be limited
to, e.g., (a) PLT or (b) Above-the-Fold time instants.

interesting research questions for the community to address, which we discuss
in Section 4.4. We conclude in Section 5.

2 Background and related work

This section first discusses the existing metrics that aim to capture Web QoS,
which we build on to define a practical method to infer the ATF time in Section 3.
Then, it presents the existing models to estimate Web QoE from these QoS
metrics, which we evaluate in Section 4.

2.1 Web QoS metrics

The Web browsing process is complex with the request, download, and rendering
of all objects making up a Webpage. Hence, measuring when the page has finished
loading from the user’s perspective is challenging. The literature introduces two
classes of objective QoS metrics, which we exemplify with the help of Fig. 1.

Time instants. The time to load a Web page has a number of components, such
as the time at which the first byte is received (TTFB), the time at which the first
object is painted (TTFP) by the browser, the parsing of the Document Object
Model (DOM), to the complete download (PLT, that we measure using the on-
Load browser event) or the rendering of the full page (VisualComplete). We no-
tice that whereas network-related time-instant metrics (e.g. TTFB, DOM, PLT)
are easy to measure, rendering-related metrics (e.g. TTFP, VisualComplete) are
harder to define across browsers [20]. An interesting metric proposed by Google
in this class is represented by the ATF time [10], defined as the time at which the
content shown in the visible part of the Webpage is completely rendered. Albeit
interesting, the ATF metric is neither available in Webpagetest4, nor defined in
W3C’s navigation timing specifications.5 This omission is possibly due to the
fact that the ATF time is significantly more complex to measure, as it requires
taking screenshots during the rendering process and a post-processing stage of
the captured frames. One of our contributions is to propose a practical way to
approximate the ATF time, as well as provide an open source implementation.

4 https://www.webpagetest.org/
5 https://www.w3.org/TR/navigation-timing/



Time integrals. Another class of metrics recognizes that a single time instant
hardly captures all the complexity of interactions between the user and the
rendering process of the page. Instead, this class integrates the loading time over
all events of a given type throughout the evolution of a page progress. Following
Google’s original SpeedIndex (SI) [3] definition, a number of generalizations have
been proposed in the literature [8, 15]. Metrics in this class fit the general form:

Xend =

∫ tend

0

(1− x(t))dt (1)

where Xend is the value of the metric, tend indicates an event considered as
time horizon and x(t) ∈ [0, 1] is the completion rate at time t. In particular,
SpeedIndex (SI) [3] measures x(t) as the visual progress using mean pixel his-
togram difference computed until the VisualComplete time. ObjectIndex (OI)
and ByteIndex (BI) [8] use the percentage of objects (and bytes) downloaded
until the PLT. Finally, PerceptualSpeedIndex (PSI) [15] uses Structural Simi-
larity to measure the visual progress x(t) and cut the time horizon at either the
PLT, or at an arbitrary time earlier than PLT.

One interesting question is how to select tend. A previous A/B study [15]
showed two pages rendering processes side by side, and asked users to click on
the page that completed faster: the best predictor uses the Time to Click as
tend, which considerably improves PSI accuracy in estimating user QoE [15].
Our experiments show that setting tend with the ATF time is a good option,
and our method to compute the ATF time enables measuring it during normal
user browsing (i.e., without requiring user intervention).

2.2 Web QoE models

The metrics introduced in the previous section are measurable automatically
from the browser (even though those involving rendering are fairly complex to
compute). These metrics, however, may not directly capture the user experience
(or QoE), which is often measured explicitly by an opinion score and summarized
with the MOS. There are two main approaches for mapping of QoS metrics into
MOS: expert models, where domain experts specify a closed form function and
use MOS data to fit model parameters, or machine learning models, where MOS
data is used to train the model.

Expert models. Two well established [22], models of Web QoE are the ITU-T
recommendation model [17] and the IQX [14] hypothesis. The ITU-T model
follows the Weber-Fechner Law and assumes that the user QoE has a logarithmic
relationship with the underlying QoS metric. The model is in the form:

QoE(x) = α log(x) + γ, (2)

where x is the QoS metric (typically, PLT) and with α, γ parameters. The ITU-T
models are derived for three different contexts (fast, medium, and slow networks)



with a different minimum and maximum session time for the different contexts
so that QoE ∈ [1, 5].

Alternatively, the model based on the IQX hypothesis [14] postulates an
exponential interdependency between QoE and QoS metrics. The idea of the
model is that if the QoE is high, a small variation in the underlying QoS metric
will strongly affect the QoE. Instead, a degradation in QoS metric will not lower
QoE as much if the overall QoE is already bad. Under IQX, for a given change
in QoS metric the change of QoE depends on the current level of QoE as:

QoE(x) = αe−βx + γ (3)

where x is a QoS metric and with α, β, γ parameters. We evaluate both loga-
rithmic and exponential models in Section 4.

Machine learning. While machine learning algorithms have been used to model
QoE for VoIP [12], video streaming [6] or Skype [23], its application to Web
browsing is still lacking. One marked exception is the work by Gao et al. [15],
where authors formulate a ternary classification task (i.e., A is faster, B is faster,
none is faster) and employ Random Forest and Gradient Boosting ML techniques
with QoS metrics such as those described in Section 2.1 as input features. In this
paper, we focus on a more difficult task, formulated as a regression problem in
the support MOS ∈ [1, 5] ⊂ R, and additionally contrast ML results to those
achievable by state of the art expert models.

3 Approximating the ATF time

One way to calculate the ATF time is to monitor the page rendering process
and identify when the pixels on the visible part of the page, also known as the
above-the-fold part, stop changing. This can be done by monitoring the individ-
ually rendered pixels (or histograms of the rendering) and detecting when they
stabilize. This approach, however, is processing intensive and difficult to apply
in the wild, as the overhead may impair user experience. Webpages also contain
visual jitter due to, for example, layout instabilities or carousel elements [15],
making it harder to detect the ATF time using pixel comparison methods.

Methodology. We propose a method to approximate the ATF time from the
browser itself without requiring image processing. We leverage the browser’s
ability to determine the position of objects inside a fully rendered page and the
recorded loading times of HTTP requests. Our method works as follows. First,
we detect all the elements of the Webpage and the browser window size. Then,
we trace loading time and resource type for all HTTP requests, and determine
which objects are rendered above-the-fold. To do so, we use simple heuristics
to classify resource types between images, JavaScripts (JS), CSS, HTML, etc.
For objects that are directly rendered (e.g., of the image class), the coordinates
make it obvious whether they are, at least partly, above-the-fold. For objects
for which we have no direct indication whether they are used for rendering



Fig. 2: Extension example: Time-instant metrics show that whereas DOM loads
at 2.62s, all objects above the fold are rendered on or before AATF=5.37s and
then the page finishes loading at PLT=16.11sec. By definition, Time-integral
metrics are even shorter BIAATF<BIPLT<AATF, hinting that PLT may be
significantly off with respect to timescales relevant to the user perception.

(e.g., styles that are defined through CSS; visual changes generated by JS), we
conservatively assume they are required for rendering above-the-fold content.
More formally, denoting with To the loading time of object o, and letting I be
the set of all images, IATF the subset of images whose coordinates are at least
partially above-the-fold, J the set of all JavaScript HTTP requests and C the
set of all CSS requests, we calculate the Approximate ATF (AATF) time as:

AATF = max
o
{To|o ∈ J ∪ C ∪ IATF } (4)

We stress that AATF should not be considered as a replacement metric for ATF:
to that extent, it would be necessary to comprehensively validate AATF against
pixel-based measurements of ATF, which we leave for future work. At the same
time, our experiments indicate that AATF has a good discriminative power as
it helps ameliorate forecasts of user MOS, and as such has value on its own.

Implementation. We implemented the method to approximate the ATF time
as an open-source Chrome extension [5]. The script executes after the onLoad

event triggers. We use jQuery to detect visible DOM objects. For each object, we
detect its position and dimensions on the page. We use this information along-
side the dimension of the browser window, which we obtain using JavaScript,
to determine which DOM objects are visible and above-the-fold. We use the
Window.performance API to obtain the name, type, and timing information
about the resources loaded in the page. We compare the src field of DOM
object to the url of HTTP request to match HTML objects to its correspond-
ing timing information. Finally, we calculate the AATF time using (4). Fig 2
shows and comments an example of the results from the extension applied when
browsing the Amazon Webpage. It can be seen that only 8 of the 154 images
are located above-the-fold (circled in blue in Fig 2), with a significant difference
between PLT, ATF and derived metrics.



Approximations and limitations. As in any real-world deployment, we find a
number of technicalities which complicates the process of detecting the resources
located above the fold. For instance, some Webpages contain sliding images
which keep rotating in the above-the-fold area. Additionally, there are cases
where images happen to be above-the-fold but also overlap, so that some of
them are not actually visible. For the sake of simplicity, we assume that all the
images are visible for the AATF time calculation, which makes a conservative
approximation. Also, in our current implementation, we consider images but do
not take into account other multimedia object types (e.g., Flash) that may be
relevant and that we leave for future work.

In some cases, we find image HTTP requests that do not match to any
known HTML object. This issue happens, for example, when the background
image of buttons is put into place using CSS (circled in red in Fig 2). Although
we cannot reliably detect if these “unmatched” images are above or below the
fold, we can still calculate the AATF time either considering that those images
are always “above” (i.e., which upper bounds the AATF time) or “below” the
fold (i.e., a lower bound). Our investigation reveals that whereas the PLT vs
AATF difference is significant, these low-level details have no noticeable impact
on the AATF time computation (not reported here for lack of space).

4 Modeling WebQoE

In this section, we thoroughly explore how Web QoS metrics relate to user QoE.
We detail the dataset used in this analysis, explore how well expert models
can predict QoE, and to what extent machine learning approaches present an
advantage in comparison to expert models.

4.1 Dataset

To assess the impact of application QoS on QoE, we extend our previous ex-
periment on measuring Web user experience [9]. We gather 8,689 Web browsing
sessions from 241 volunteers, that we make available at [28]. During each Web
browsing session, a script guides the user to select one Webpage from a list, open
the page on the browser, and provide QoE feedback using the Absolute Category
Rating (ACR) (from 1-Bad to 5-Excellent). For lack of space, we refer readers
to [9] for a detailed presentation of our experimental setup.

In this work, we focus on 12 non-landing Webpages from the Alexa top
100 popular pages in France, with diverse page size (0.43–2.88 MB), number
of objects (24–212), and loading times varying by over one order of magnitude.
Since we rely on volunteers to obtain user opinion scores, we employ basic dataset
sanitization techniques. First, we remove from the dataset all samples with no
user rating or where the page failed to load completely. Then, we remove users
who failed to complete at least 10 reviews. We keep 224 out of the original 241
users, and 8,568 out of 8,689 reviews. Finally, we restrict our analysis to only 12



Fig. 3: Expert models: Impact of (a) explanatory QoS metric x for the f(·) =IQX
hypothesis and (b) combined impact of metric x and mapping function f(·)

out of the 25 original Webpages comprising a significant number of reviews and
experimental conditions, which leaves us with 3,400 user ratings.

We obtain MOS values by averaging the opinion score of a Webpage for
specific user groups. These groups are defined based on the distributional char-
acteristics of the input QoS metric x, whose impact on MOS we are interested
to assess. We grouped the user ratings of each page in 6 bins, specifically at
every 20th percentile of metric x until the 80th percentile, and further break the
tail in two bins each representing 10% of the population. All volunteers used
identical devices during the experiments. The models we obtain implicitly as-
sume the experimental conditions observed in this dataset such as the screen
size, performance expectation, and device capabilities.

4.2 Expert models

Application metrics. To assess how well a function f(·) applied to a QoS met-
ric x correlates with MOS, we consider the following time-instants: (i) the time
to load the DOM, (ii) the time to load the last visible image or other multimedia
object AATF and (iii) the time to trigger the onLoad event PLT. We additionally
include time-integral metrics with either an AATF time or PLT time-horizon:
specifically, we consider (iv) two ByteIndex BIAATF<BIPLT metrics, where x(t)
express the percentage of bytes downloaded at time t, and (v) two ObjectIndex
OIAATF<BIPLT metrics, where x(t) counts the percentage of objects down-
loaded at time t. Finally, we define (vi) two ImageIndex IIAATF<IIPLT metrics,
where x(t) only considers the size of objects of the image class, to purposely
exacerbate the prominent role of images in the visual rendering of a page.

Figure 3-(a) assesses the impact of the nine selected QoS metrics on QoE,
using the IQX model. We observe that, apart from DOM, all metrics show a
strong (> 0.8) Pearson correlation with MOS. Specifically, we see that counting
bytes (BI) and especially image bytes (II) is more valuable than counting objects
(OI). Additionally, results confirm the importance of evaluating time-integrals by
narrowing their time-horizon before the PLT (as suggested by Gao et al. [15]),
confirming the importance of estimating the ATF time (as proposed in this
paper). Overall, the metric with best correlation to MOS is IIAATF (0.85), with
PLT ranking seventh (0.81). These results confirm the soundness of using the
AATF time as proxy of user-perceived page loading time [24].



Mapping functions. We use three functions to map QoS metrics to user QoE:
specifically, a linear 1(·) function, a logarithm function of the form of (2), and an
exponential function of the form of (3). While the rationale behind (2) and (3)
come from the Weber-Fetchner law and the IQX hypothesis, we stress that many
works still directly compare PLT statistics, which is analogous to a simplistic
linear mapping. We carefully calibrate the model parameters using the non-
linear least squares Marquardt-Levenberg algorithm. In Figure 3-(b) we contrast
how these different mappings correlate to QoE for a relevant subset of the QoS
metrics: specifically, we select the most widely used metric (PLT) as well as
those metrics exhibiting the worst (DOM) and the best (IIAATF ) correlation
with user QoE. We also compare results with the reference obtained by default
ITU-T models for slow/medium/fast network conditions using the PLT metric.

Among the default ITU-T models, the model for medium networking condi-
tions shows the stronger correlation to QoE in our dataset. This can be explained
by users’ expectation of network performance, since the experimental network
conditions mirror that of Internet Web access. It is worth noting that the un-
calibrated ITU-T medium model is still better than a linear mapping of PLT
to QoE. We observe across all metrics in our dataset that the exponential
mapping is superior to logarithmic, which is in turn superior to simply using a
linear mapping to estimate QoE. It is easy to observe that our proposed metrics
based on the AATF time (particularly, IIAATF ) consistently yields the strongest
correlation with MOS, across all functions.

4.3 Machine Learning

We evaluate different machine learning techniques to learn regression models that
predict user QoE. Note that the learned function f(·) maps a vector x to MOS,
compared to the expert models where x is a scalar metric. We evaluate the per-
formance of three state-of-the-art machine learning algorithms: Support Vector
Regression (SVR), Classification And Regression Tree (CART), and AdaBoost
with CART (BOOST) implemented using the sci-kit learn Python module.

Parameter tuning. We tune the hyper-parameters of the ML algorithms using
grid optimization. Namely, we select the best combination of parameters ε ∈
[10−2, 1], γ ∈ [10−3, 10] and C ∈ [1, 104] for SVR, minimum number of samples
per leaf ∈ [1, 10] and tree depth ∈ [1, 10] for CART and BOOST, and number
of boosted trees ∈ [10, 103] for BOOST. Grid optimization outputs ε = 0.3,
γ = 10−3, and C = 104 for SVR, and suggests 4 samples per leaf and tree depth
of 2 for both CART and BOOST, and 102 trees for BOOST.

Feature selection. We employ three strategies for building predictors using
different sets of features from our dataset. The first baseline strategy considers
as features the 9 raw metrics defined in Section 4.2. The second strategy feeds
the ML model with the output of the 3 expert models computed on the 9 raw
metrics, for an extended set of 27 features (notice that since one mapping func-



Fig. 4: Comparison of ML algorithm using different feature sets against reference
expert models, for correlation and RMSE metrics

tion is linear, there are 18 additional features beyond the raw ones). Finally, as
performance upper bound, we perform an exhaustive search of feature subsets
from the extended set, to select the combination that minimizes the Root Mean
Squared Error (RMSE) of the predictor. The selected combinations include few
features (3–5 out of 9) that vary across ML algorithms, although the sets con-
sistently include IIPLT (all algorithms) AATF and IIAATF (all but one).

Results. We evaluate ML predictors using leave-one-out cross-validation. Fig-
ure 4 shows the (a) correlation and (b) RMSE between MOS and the ML model,
for the full set of algorithms and feature selection strategies. We also report, as
a reference, the performance of the best expert model (exponential, IIAATF ),
a traditional model (logarithmic, PLT ), and the worst expert model (linear,
DOM). Similar considerations hold for both correlation (the higher the better)
or RMSE (the lower the better): BOOST presents a small advantage over CART
trees, although SVR outperforms them both. Yet, the picture clearly shows that
SVR results are on par with the best expert model, with a small advantage
arising in the optimistic case of an exhaustive search for feature selection.

4.4 Discussion

We believe that there is further room for improvement. Notably, we argue that,
due to the variety of Webpages, the attempt to build a one-size-fit-all model is
doomed to fail. To show this, we report in Figure 5 an extreme example, where
(a) we build a model per Webpage and (b) contrast the RMSE results in the
per-page vs. all-pages model cases: it is immediate to see that RMSE drastically
decreases under fine grained models – the gap is comparably larger than what
could be reasonably achieved by further refining the metrics definition, or by the
use of more complex expert (or learned) models. Clearly, given the sheer number
of Webpages, it would be highly unrealistic to attempt to systematically build
such fine-grained models. At the same time, we believe that due to the high skew
of Web content, it would be scalable to (i) build per-page models for only very
popular pages (e.g. the top-1000 Alexa) and (ii) build per-class models for the
rest of pages, by clustering together pages with similar characteristics. Whereas
our dataset currently includes few pages to perform a full-blown study, we believe



(a) Black: one model for all pages, Gray:
one model per page

(b) Lines: one model for all pages, Bars:
one model per page

Fig. 5: Discussion: one model for all pages vs. one model per page

that crowdsourcing efforts such as Gao et al. [15] and systematic share of dataset
can collectively assist the community to achieve this goal.

5 Conclusions

This paper narrows the gap between QoS and QoE for Web applications. Our
contributions are, first, to motivate, define and implement a simple yet effective
method to compute an Approximated ATF time (AATF) [5], which is also use-
ful to narrow the time-horizon of time-integral metrics [15]. Second, we carry
on a large campaign to collect a dataset of nearly 9,000 user subjective feed-
back, which we use for our analysis and make available to the community [28].
Finally, we systematically compare expert vs. data-driven models based on a set
of QoS metrics, which include the ATF time approximation and variants. In
a nutshell, our results suggest that whereas considering PLT metric with linear
mapping should be considered a discouraged practice. Using (i) an exponential
IQX mapping, (ii) over time-integral metrics considering ByteIndex progress of
image-content only, and (iii) narrowing the time-horizon to the AATF time, pro-
vides a sizeable improvement of Web QoE estimation. Finally, we found that (iv)
calibrated expert models can provide estimations on par with state-of-the-art ML
algorithms.

Acknowledgments

We are grateful to our shepherd Mike Wittie and to the anonymous review-
ers, whose useful comments helped us improving our work. This work has been
carried out at LINCS (http://www.lincs.fr) and benefited from support of
NewNet@Paris, Ciscos Chair “Networks for the Future” at Telecom Paris-
Tech and the EU Marie curie ITN program METRICS (grant no. 607728).

References

1. https://googlewebmastercentral.blogspot.fr/2010/04/

using-site-speed-in-web-search-ranking.html.



2. http://googleresearch.blogspot.fr/2009/06/speed-matters.html.
3. https://sites.google.com/a/webpagetest.org/docs/using-webpagetest/

metrics/speed-index.
4. Alexa Internet Inc. http://www.alexa.com.
5. Approximate ATF chrome extension. https://github.com/TeamRossi/ATF.
6. C. G. Bampis and A. C. Bovik. Learning to predict streaming video qoe: Distor-

tions, rebuffering and memory. CoRR, abs/1703.00633, 2017.
7. M. Belshe, R. Peon, et al. Hypertext Transfer Protocol Version 2 (HTTP/2). RFC

7540, 2015.
8. E. Bocchi, L. De Cicco, et al. Measuring the quality of experience of web users.

ACM SIGCOMM CCR, 2016.
9. E. Bocchi, L. De Cicco, et al. The web, the users, and the mos: Influence of http/2

on user experience. In Passive and Active Measurements. 2017.
10. J. Brutlag, Z. Abrams, et al. Above the fold time: Measuring web page performance

visually.
11. M. Butkiewicz, H. V. Madhyastha, et al. Characterizing web page complexity and

its impact. IEEE/ACM Trans. Networking, 22(3):943, 2014.
12. P. Charonyktakis, M. Plakia, et al. On user-centric modular qoe prediction for

voip based on machine-learning algorithms. IEEE Trans. Mob. Comput., 2016.
13. J. Erman, V. Gopalakrishnan, et al. Towards a spdy’ier mobile web? In ACM

CoNEXT, pages 303–314. 2013.
14. M. Fiedler, T. Hoßfeld, et al. A generic quantitative relationship between quality

of experience and quality of service. IEEE Network, 24(2):36, 2010.
15. Q. Gao, P. Dey, et al. Perceived performance of top retail webpages in the wild:

Insights from large-scale crowdsourcing of above-the-fold qoe. In Proc. ACM
Internet-QoE workshop. 2017.

16. Google. Spdy, an experimental protocol for a faster web. https://www.chromium.
org/spdy/spdy-whitepaper.

17. ITU-T. Estimating end-to-end performance in ip networks for data application.,
2014.

18. C. Kelton, J. Ryoo, et al. Improving user perceived page load time using gaze. In
Proc. USENIX NSDI. 2017.

19. A. Langley, A. Riddoch, et al. The QUIC Transport Protocol: Design and Internet-
Scale Deployment. In Proc. ACM SIGCOMM. 2017.

20. Minutes of TPAC Web Performance WG meeting. https://www.w3.org/2016/09/
23-webperf-minutes.html.

21. F. Qian, V. Gopalakrishnan, et al. Tm3: Flexible transport-layer multi-pipe mul-
tiplexing middlebox without head-of-line blocking. In ACM CoNEXT. 2015.

22. R. Schatz, T. Hoßfeld, et al. From packets to people: Quality of experience as
a new measurement challenge. In Data traffic monitoring and analysis. Springer,
2013.

23. T. Spetebroot, S. Afra, et al. From network-level measurements to expected quality
of experience: the skype use case. In M & N workshop. 2015.

24. M. Varvello, J. Blackburn, et al. Eyeorg: A platform for crowdsourcing web quality
of experience measurements. In Proc. ACM CoNEXT. 2016.

25. M. Varvello, K. Schomp, et al. Is The Web HTTP/2 Yet? In Proc. PAM. 2016.
26. X. S. Wang, A. Balasubramanian, et al. How speedy is spdy? In USENIX NSDI,

pages 387–399. USENIX Association, Seattle, WA, 2014.
27. X. S. Wang, A. Krishnamurthy, et al. Speeding up web page loads with shandian.

In USENIX NSDI. 2016.
28. Web QoE dataset. https://newnet.telecom-paristech.fr/index.php/webqoe/.


